

Technical parameters	CU3-04M
LED Indication	
Green LED RUN:	unit operating status indication
Red LED ERR:	unit error indication
TFT display	displays the current status and settings
Type:	color TFT
Resolution:	240×240 /1:1 aspect ratio
Visible area:	$26 \times 26 \mathrm{~mm}$
Controlling:	using arows
The internal real-time clock:	accuracy: 1 //day at $23^{\circ} \mathrm{C}$
Inputs	
Inputs:	$8 \times$ DIN GS 12-230V ACIDC (contra to the common terminal COM)
	$4 x$ DIN current or voltage (with adjustable switching of the current mode)
	$7 \times$ AIN / DIN current or voltage (with adjustable switching of the current mode)
Outputs	
Output:	4x AOUT 0(1)-10V max. $10 \mathrm{~mA} /$ channel 1x RefOUT 5(10)V max. 100mA
Number of Units connected directly to CU3-04M:	max. 32
Possibility of expansion via external master	up to 544 units, 8x Ethernet master
Output relay separated	
from all internal circuits:	reinforced Insulation*
Insulation between COM potentiass:	reinforced Insulation*
Isolates. voltage open	
relay contact:	1 kv
SSR (Electronic Relay):	4x NO (OUT3- OUT6)
Swithed voltage:	$20-240 \mathrm{VAC}$
Switched output:	480 VA
Peak current:	$20 \mathrm{~A}, \mathrm{t} \leq 16 \mathrm{~ms}$
Relay 6A:	12x NO (RE1 - RE6, RE11 - RE16), 1x HW block changeover (OUT1 - OUT2)
Switched voltage:	$250 \mathrm{VAC}, 30 \mathrm{VDC}$
Switched output:	$1500 \mathrm{VA} / \mathrm{AC1}, 180 \mathrm{~W} / \mathrm{DC}$
Minimum switching load:	$500 \mathrm{~mW}(12 \mathrm{~V} / 10 \mathrm{~mA})$
Mechanical life:	10×10^{6}
Electrical life AC1:	6×10^{4}
Relay 10A:	4× NO (RE7-RE10)
Switched voltage:	$250 \mathrm{VAC}, 24 \mathrm{VDC}$
Switched output:	$2500 \mathrm{VA} / \mathrm{AC1}, 240 \mathrm{~W} / \mathrm{DC}$
Peak current:	30 Amax .4 s.at 10% duty yycle
Minimum switching current:	100 mA
Switching frequency without	
load:	$1200 \mathrm{~min}^{-1}$
Switching frequency with rated load:	$6 \mathrm{~min}^{-1}$
Mechanical life:	3×10^{7}
Electrical life AC1:	0.7×10^{5}

CU3-04M control unit is designed to control hotel rooms. CU3-04M control unit is designed to enable management of all technology that may be in guest rooms, it is designed to provide maximum comfort while running with maximum efficiency throughout the building.
CU3-04M is equipped with:
igital input for connecting push-button controls, motion detectors ar, for example magnetic detectors,
Digital outputs for the control of actuators, ventilator fan coil units, door locks, lighting, shading techniques, sockets and other equipment.
Analog output 0(1)-10V for controlling actuators and controlled continuously dimmable ballasts, controlled using voltage signals.

32 BUS controllers and thermostats.
nal source CU 3 tor up to 64 electronic ballasts illumination (internominal $U 3-04 \mathrm{M}$ is able to power the connected ballasts up to RF communication interface for controlling iNELS RF Control wireless receivers (updated list of supported receiver is available in the iNELS installation manual). To create a logic of local signer \& Manager (iDM3).

CU3-04M control units can be connected in a complex control system (BMS) 4 Niagara, Niagara AX and Promotic.
CU3-04M control unit is also able to communicate with a hotel system (PMS) Fidelio, so it is possible, for example, automatically during check-in to run in the room a welcoming scene, immediately signalling requirements for room cleaning etc.
sonection to BMS it is possible amongst other things to - Monitor the status of all system components from one location. -Interconnect iNELS with other protocols.

- Create logical functions between the managing units.
- Optimize the performance of HVAC systems based
optimize the performance of HVAC systems based on current requirements from individual rooms.
for connecting to Ethernet (100 Mbps) and ports, one of which is used trol units.
the setting of unit parameters displays the current status and allows the enabled service.
Navigating the mens Cu3 mis Navs on the front panel.
lation into lation into switchboard on DIN rail EN60715.

DIN $=$ digital input
AOUT $=$ analogue o
AOUT $=$ analogue output
AIN $=$ analogue input
$\mathrm{AN}=$ analogue input
$\mathrm{GS}=$ galvanically isolated
*(Cat. II surges by EN 60664-1)
for antenna connector is 0.56 Nm
** With an external DALI power supply

Communication protocol:	RF Touch Compatible
Transmitting frequency:	$866 \mathrm{MHz} / 868 \mathrm{MHz} / 916 \mathrm{MHz}$
Signal transmission methods:	bidirectionally addressed message
Output for RF antenna:	SMA connector**
RF antenna:	1 dB (part of package)
Free space range:	up to 100 m

Minimum load			Minimum load		
Relay contact	mV	V/mA	Relay contact	mV	V/mA
AgSnO_{2}	1000	10/100	AgNi	300	5/10

GCR3-11, GCH3-31, GMR3-61, SA3-02B, SA3-06M, SA3-012M, WMR3-21

Type of load	$\longdiv { \square } - \widetilde { \square }$ AC1	-M - AC2	-M - AC3	\square AC5a uncompensated	AC5a compensated	$\stackrel{(M)}{(M)}$ AC5b	$\underset{\text { AC6a }}{\underset{3}{ } \mid \xi}$	Mn AC7b	AC12
Contact material AgSnO_{2}, contact 8 A	250V/8A	250V/2.5A	250V/1.5A	230V / 1.5A (345VA)	230V/ 1.5 A (345VA) till max output $\mathrm{C}=14 \mathrm{u} F$	250W	250V/4A	250V/1A	250V/1A
Type of load		\bar{m} AC14	\bar{m}好-1 AC15	DC1	-M - DC3	-M - DC5	\square	\bar{m} DC13	$\begin{gathered} \bar{m} \\ \text { DC14 } \end{gathered}$
Contact material AgSnO_{2}, contact 8A	x	250V/3A	250V/3A	24V/8A	24V/3A	24V/2A	24V / 8A	24V / 1A	x

CU3-04M (RE7 - RE-10), LBC3-02M, SA3-01B, SA3-02M, SA3-04M, SA3-022M (RE7 - RE-10), EA3-022M (RE7 - RE-10), JA3-018M (U/D1 - U/D9)

Type of load	\square AC1	-M - AC2	-M - AC3	AC5a uncompensated	AC5a compensated	$\xrightarrow{(M)}$ AC5b	$\begin{gathered} 3 \mid \xi \\ A C 6 a \end{gathered}$	$\cdots m$ AC7b	AC12
Contact material $\mathrm{AgSnO}_{2^{\prime}}$ contact 16 A	250V/16A	250V/5A	250V/3A	$230 \mathrm{~V} / 3 \mathrm{~A}$ (690VA)	$230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA})$ till max output $\mathrm{C}=14 \mathrm{uF}$	1500W	x	250V/3A	250V/10A
Type of load	$\frac{3 \mid \xi A}{A C 13}$	\bar{m} AC14	$\overline{\prod_{k-1}^{n}}$ AC15		$-$	$-$	DC12	\bar{m} DC13	\bar{m} DC14
Contact material $\mathrm{AgSnO}_{2^{\prime}}$ contact 16A	250 / 6 A	250V / 6A	250V/6A	24V / 16A	24V/6A	24V / 4A	24V/16A	24V/2A	24V/2A

SA3-02B/Ni*, SA3-06M/Ni*, SA3-012M/Ni*

Type of load	$\begin{gathered} \underset{\cos \varphi \geq 0.95}{\square} \\ \text { AC1 } \end{gathered}$	$-$	$-$	$=\square$		$\xrightarrow{(M)}$ AC5b	$\begin{gathered} 3 \mid \xi \\ \text { AC6a } \end{gathered}$	$\cdots n$ AC7b	\square
Contact material AgNi contact 8A	250V/8A	250V/2.5A	250V / 1.5A	230V/1.5A (345VA)	x	400W	x	250V/1.5A	250V/5A
Type of load	$\frac{3 \mid \xi A}{A C 13}$	\bar{m} AC14		DC1	-M - DC3		DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgNi contact 8A	250 / 3A	250V/3A	250V/3A	24V/8A	24V/3A	$24 \mathrm{~V} / 2 \mathrm{~A}$	24V/8A	24V/1A	$24 \mathrm{~V} / 1 \mathrm{~A}$
SA3-01B/Ni*, SA3-06M/ Ni^{*}, SA3-04M/Ni*									
Type of load	$\begin{gathered} \sqrt{\cos \varphi \geq 0.95} \\ \mathrm{AC1} \end{gathered}$	$-$	-M - AC3	AC5a uncompensated	AC5a compensated	$\xrightarrow{(M)}$ AC5b	$\underset{\text { AC6a }}{3 \mid \xi}$	$\cdots m$ AC7b	\square
Contact material AgNi contact 16A	250V / 16A	250V/5A	250V/3A	230V/3A (690VA)	x	800W	x	250V/3A	250V/10A
Type of load		\bar{m} AC14	\bar{m} 나-1, AC15		$-$	$-$	DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgNi contact 16A	250 / 6A	250V / 6A	250V / 6A	24V/16A	24V/6A	24V/4A	24V/16A	24V/2A	$24 \mathrm{~V} / 2 \mathrm{~A}$

JA3-018M (U/D1 - U/D9), CU3-04M (RE1 - RE6, OUT1 - OUT2, RE11-RE16), SA3-022M (RE1 - RE6, OUT1 - OUT2, RE11-RE16, SHUTTER), EA3-022M (RE1 - RE6, OUT1 - OUT2, RE11-RE16, SHUTTER), FA3-612M (FAN1 - FAN3, RE)				
Type of load	$\longdiv { \operatorname { c o s } _ { \varphi \geq 0 . 9 5 } }$ AC1	-(M)- AC3	\bar{m}市-1 AC15	\square
Contact material AgNi contact 6A	250V/6A	230V / 0.8A	230V / 1.3A	$\begin{gathered} 30 \mathrm{~V} / 3 \mathrm{~A} \\ 110 \mathrm{~V} / 0.2 \mathrm{~A} \\ 220 \mathrm{~V} / 0.12 \mathrm{~A} \end{gathered}$

Demonstrated symbols are informative.
*Products with AgNi contact only up on request for extra charge.

