

000 ЭЛКО ЭП РУС

4-я Тверская-Ямская 33/39 125047 Москва, Россия Тел: +7 (499) 978 76 41

эл. почта: elko@elkoep.ru, www.elkoep.ru

ТОВ ЕЛКО ЕП УКРАЇНА

вул. Сирецька 35 04073 Київ, Україна Тел.: +38 044 221 10 55

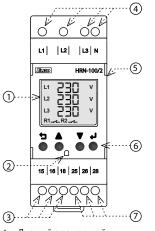
эл. почта: info@elkoep.com.ua, www.elkoep.ua

Made in Czech Republic

02-1/2025

HRN-100/2

Многофункциональное реле контроля напряжения в 3F c LCD-дисплеем


Характеристика

- Трехпроводное или четырехпроводное подключение (с нулем или без него).
- Опционально контролирует высокое и низкое напряжение и частоту в 3-фазных цепях.
- Позволяет контролировать выпадение напряжения, последовательность и асимметрию фаз, включая обрыв нулевого провода (только для 4-х проводного подключения).
- Устройство получает питание от контролируемого напряжения.
- Оба выходных контакта можно настроить индивидуально.
- Эффективно измеряет истинную величину переменного напряжения (True RMS).
- Дополнительная настройка задержки реакции выходного контакта на измеренное состояние ошибки или перехода из состояния ошибки в состояние ОК, включая возможность задержки срабатывания выходных контактов после подключения питания.
- Возможность автоматического или ручного перехода из состояния ошибки (память).
- Выборочное замыкание или размыкание выходного контакта при измерении состояния ошибки (Fail Safe / Non Fail Safe).
- Защита паролем от несанкционированного изменения настроек.
- Цифровой дисплей с подсветкой с возможностью мониторинга текущего состояния сети, включая возможные сбои.
- Последние пять состояний ошибок сохраняются в истории, которую можно просмотреть ретроспективно.

8

• Пломбируемая прозрачная крышка для дисплея и элементов управления.

Описание устройства

- (True) HRN-100/2 9 10 18 12)
- Дисплей с подсветкой
- Место для пломбирования
- Выходной контакт RL1 (15-16-18)
- Клеммы питания / контролируемого напряжения (L1-L2-L3-N)
- Прозрачная открывающаяся крышка
- - Кнопки управления Выходной контакт RL2 (25-26-28)
- Окно статуса ошибки и функциональное меню в настройках
- Индикация фазного или межфазного напряжения.
- 10. Состояние выходных контактов RL1 и RL2

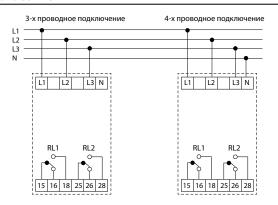
- 11. Кнопка НАЗАД ኳ
- 12. Кнопка ВВЕРХ ▲
- 13. Индикация задержки
- 14. Задержка в секундах 15. Асимметрия в процентах
- 16. Частота в герцах
- 17. Напряжение в вольтах
- 18. Текущее состояние напряжения или другого настроенного параметра
- 19. Кнопка ПОДТВЕРЖДЕНИЕ 🗸
- 20. Кнопка ВНИЗ ▼

Технические параметры

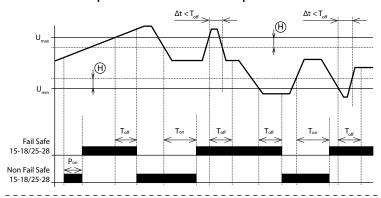
HRN-100/2

Питание	
Силовые и измерительные клеммы:	L1, L2, L3, (N)
Питающее и контролируемое	$U_{LN} = 3 \sim 90 - 288 \text{ V, (AC } 45-65 \text{ Hz)}$
напряжение:	$U_{LL} = 3 \sim 155 - 500 \text{ V}, (AC 45-65 \text{ Hz})$
Мощность (макс.):	5 VA

Контролируемая цепь	
Выбор контролируемой цепи:	Фазовое напряжение - 3 фазы, 4 провода
	Межфазное напряжение - 3 фазы, 3 провода
Регулируемый верхний (OV) и	Фазовое напряжение: 90 - 288 V AC
нижний (UV) уровни напряжения:	Межфазное напряжение: 155 - 500 V AC
Верхнее (HC) / нижнее (LC)	Фазовое напряжение: 310 V AC / 85 V AC
предельное напряжение:	Межфазное напряжение: 535 V AC / 150 V AC
Регулируемый верхний (OF) и	
нижний (UF) уровни частоты:	45 - 65 Hz
Регулируемая асимметрия:	Абсолютное: 5 - 99 V AC
	В процентах: 2 - 50%
Регулируемый уровень гистерезиса	3 - 20 VAC (OV,UV, HC, LC)
напряжения и частоты:	0.5 - 2 Hz (OF, UF)
Настройка гистерезиса	Абсолютное: 3 - 99 V AC
асимметрии:	В процентах: 2 - 15%
Точность измеряемого напряжения:	+/- 5V
Точность измеряемой частоты:	+/- 0.3 Hz
Регулируемая задержка после	0 - 999 s
включения P _{On} :	(Инициализация HW 250 мс)
Регулируемая задержка T _{on} :	0.5 - 999 s
Регулируемая задержка T _{off} :	0.1 - 999 s
Фиксированная задержка:	<100 мс (выпадение напряжения, чередование фаз)
	<200 мс (НС, LС), <500 мс (обрыв нулевого провода)

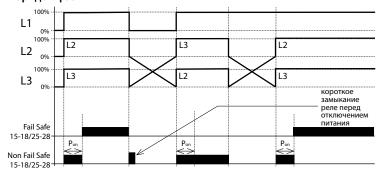

Выхол

Быход	
Выходной контакт:	2х переключ. (AgSnO₂)
Номинальный ток:	5A / AC1
Коммутируемая мощность:	1200VA / AC1, 150W / DC1
Коммутируемое напряжение:	240V AC / 30V DC
Ztrátový výkon výstupu max.:	5W
Механическая прочность:	10.000.000 операций
Эпектрическая прочность (АС1):	100.000 операций

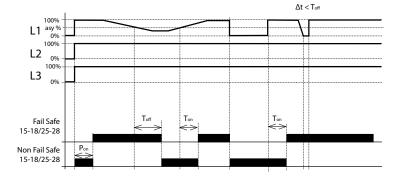

Дополнительная информация

Рабочая температура:	-10+60 °C
Складская температура:	-20+70 °C
Диэлектрическая прочность:	4кВ (питание - выход)
Рабочее положение:	Произвольно
Монтаж:	DIN-рейка EN 60715
Степень защиты:	Корпус и клеммы IP20 / Передняя панель с крышкой IP40
Категория перенапряжения:	III.
Степень загрязнения:	2
Сечение соединительных	макс. 1х 2.5, макс. 2х 1.5 /
проводов (мм²):	с гильзой макс. 1х 2.5
Размер:	90 x 36 x 66,5 mm
Bec:	132 g
Нормы соответствия:	EN 61812-1, EN IEC 63044

Подключение



Повышенное напряжение - пониженное напряжение


- После подачи питания/контролируемого напряжения, идет отсчет времени задержки P_{on} во время отсчета времени выходной контакт находится в состоянии ошибки в режиме FAIL SAFE он разомкнут. По истечении времени, если контролируемое напряжение находится в диапазоне U_{min} ... U_{max} , выходной контакт замыкается.
- Если контролируемое напряжение превышает установленное значение U_{\max} начинается отсчет времени задержки до состояния ошибки (T_{out}). По истечении времени выходной контакт размыкается.
- Если контролируемое напряжение падает ниже значения U_{max} уменьшенного на установленный гистерезис, начнется отсчет времени задержки до состояния ОК (T_{ort}). По истечении времени выходной контакт замыкается
- Если продолжительность состояния ошибки (Δt) меньше установленного значения T_{off} состояние выходного контакта не изменяется.
- Если контролируемое напряжение падает ниже значения U_{mir}, начинается отсчет времени задержки до состояния ошибки (T_{ort}). По истечении времени выходной контакт размыкается.
- Если контролируемое напряжение превышает значение $U_{\rm min'}$ увеличенное на установленный гистерезис, начнется отсчет времени задержки до состояния ОК ($T_{\rm co}$). По истечении времени выходной контакт замыкается.
- Если продолжительность состояния ошибки (Δt) меньше установленного значения (T_{off}), состояние выходного контакта не изменяется.

Порядок фаз

- После подачи питания/контролируемого напряжения идет отсчет времени задержки P_{on} во время отсчета времени выходной контакт находится в состоянии ошибки в режиме FAIL SAFE он разомкнут. По истечении времени, если последовательность фаз правильная, выходной контакт замыкается.
- Если, по истечении времени задержки P_{on} порядок фаз неправильный, выходной контакт остается разомкнутым (состояние ошибки)

Асимметрия, обрыв фазы

- После подачи питания / контролируемого напряжения идет отсчет времени задержки P_{on} во время отсчета времени выходной контакт находится в состоянии ошибки - в режиме FAIL SAFE он разомкнут. По истечении времени, если асимметрия фаз ниже установленного значения (абсолютного или процентного - см. Технические параметры), выходной контакт замыкается.
- Если фазовая асимметрия превышает установленное значение, начинается отсчет времени задержки до состояния ошибки (Т_{он}). По истечении времени выходной контакт размыкается.
- Если фазовая асимметрия падает ниже установленного значения, начинается отсчет времени задержки до состояния ОК (T_{col}). По истечении времени выходной контакт замыкается.
- Если продолжительность состояния ошибки (Δt) меньше установленного значения T_{off} состояние выходного контакта не изменяется.
- Если происходит обрыв фазы, начинается отсчет времени задержки $T_{\rm off}$. По истечении времени выходной контакт размыкается.
- Если поврежденная фаза восстанавливается, начинается отсчет времени задержки до состояния $OK(T_{cor})$. По истечении времени выходной контакт замыкается.
- Если продолжительность состояния ошибки (Δt) меньше установленного значения $T_{_{off}}$ состояние выходного контакта не изменяется.

Легенда графика:

- P_{on} Power ON delay (задержка при подключении питания)
- $P_{on} 0$ 999 с (мин. 250 мс инициализация оборудования)
- T_{on} ON delay (задержка до состояния ОК)
- T_{on} 0,5 999 c
- T_{off} OFF delay (задержка до состояния ошибки)

T_{off} - 0,1 - 999 c

- $T_{\text{off}}^{\text{off}}$ Настраивается для ошибок OV, UV, OF, UF & асимметрии
- Т_{оff} Отказ, последовательность фаз <100 мс ; Обрыв нулевого провода <500 мс
- Δt Продолжительность состояния ошибки
- Н Гистерезис

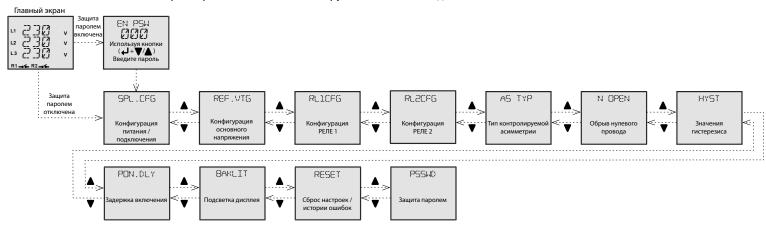
Описание элементов управления и сигнализации

Режим выходного контакта

Режим	Состояние ОК	Состояние ошибки
Fail Safe	15 & 25 (Полюс) — 18 & 28 (NO)	15 & 25 (Полюс) — 18 & 28 (NO)
Non Fail Safe	15 & 25 (Полюс) → ← 18 & 28 (NO)	15 & 25 (Полюс) → ◆ 18 & 28 (NO)

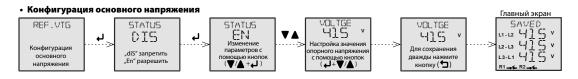
Окно состояния ошибки

Сокращение	Важность
"FLT.NF"	Обрыв нулевого провода
"FLT.LC"	Нижнее предельное напряжение
"FLT.HC"	Верхнее предельное напряжение
"RLx.PL"	Обрыв фазы
"RLx.PR"	Неправильная последовательность фаз
"RLx.ASY"	Фазовая асимметрия
"RLx.OF"	Повышенная частота
"RLx.UF"	Пониженная частота
"RLx.OV"	Перенапряжение
"RLx.UV"	Пониженное напряжение
Примечание: RLx обозначает RL1 и RL2	

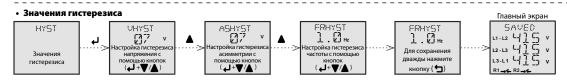

Элементы управления

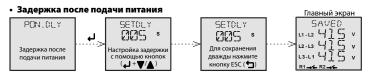
назад 🛨	Войдите в меню настроек (долгое нажатие >1 с). Вернитесь к главному экрану или предыдущему меню в режиме редактирования или отображения. Сделайте шаг назад при изменении значения или параметра.
вверх 🛦	Перемещение параметров вверх. Изменение / увеличение значения параметра в режиме редактирования. Выбор текущего измеряемого параметра на главном экране - напряжение, частота, асимметрия (нажатие кнопки <500 мс).
вниз ▼	Перемещение параметров вниз. Изменение / уменьшение значения параметра в режиме редактирования. Отображение истории сообщений об ошибках (нажатие кнопки <500 мс).
подтверждение 🗸	Выбор и сохранение значения параметра в режиме редактирования. Сброс изделия из режима памяти (долгое нажатие >1 с).
НАЗАД 5 подтверждение 4	Нажмите комбинацию клавиш, чтобы отобразить меню настроек только для чтения (долгое нажатие >1 с).

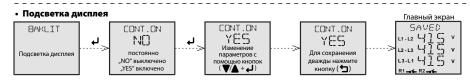
Управление

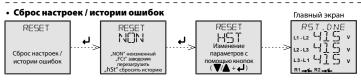

Структура меню программирования

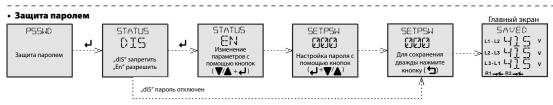
- для входа в меню программирования нажмите и удерживайте кнопку НАЗАД > 1 с. (ᅿ)
- о возможности изменения параметра / значения сигнализирует его мигание на дисплее

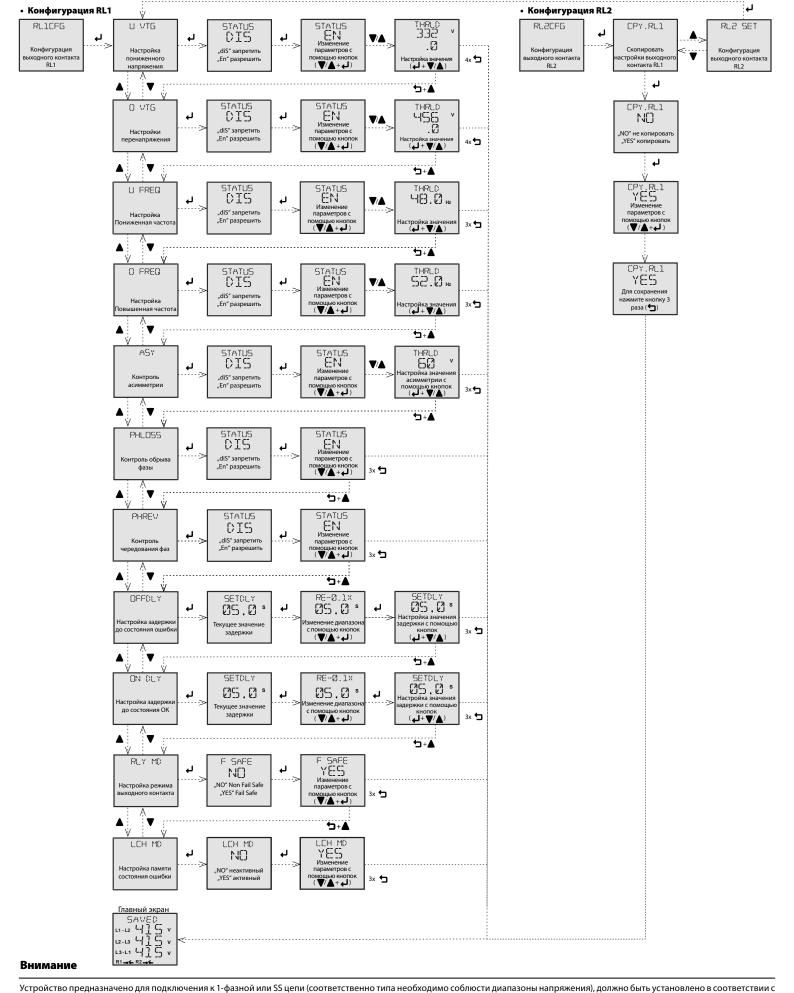

Индивидуальные настройки пунктов в подменю











указаниями и нормами, действующими в стране использования. Монтаж, подключение, настройку и обслуживание может проводить специалист с соответственной электротехнической квалификацией, который пристально изучил эту инструкцию применения и функции изделия. Автомат оснащен защитой от перегрузок и посторонних импульсов в подключенной цепи. Для правильного функционирования этих охран при монтаже дополнительно необходима охрана более высокого уровня (A, B, C) и нормативно обеспеченная защита от помех коммутирующих устройств (контакторы, моторы, индуктивные нагрузки и т.п.). Перед монтажом необходимо проверить не находится ли устанавливаемое оборудование под напряжением, а основной выключатель должен находится в положении "Выкл." Не устнавливайте реле возле устройств с эллектромагнитным излучением. Для правильной работы изделие необходимо обеспечить нормальной циркуляцией воздуха таким образом, чтобы при его длительной эксплуатации и повышении внешней температуры не была превышена долустимая рабочая температура. При установке и настройке изделия используйте отвертку шириной до 2 мм. к его монтажу и настройкам приступайте соответственно. Монтаж должен производиться, учитывая, что речь идет о полностью электронном устройстве. Нормальное функционирование изделия также зависит от способа транспортировки, складирования и обращения с изделием. Если обнаружите признаки повреждения, деформации, неисправности или отсутствующую деталь - не устанавливайте это изделие, а пошлите на рекламацию продавцу. С изделием по окончании его срока использования необходимо поступать как с электронными отходами.